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RISC-V has gained significant attention due to its flexibility, scalability, and community-driven development model. The 

growing demand for application-specific optimizations in today's diverse computational landscape, including edge AI and IoT 

applications, necessitates the creation of custom ISA extensions [1].

Introduction and Project Objectives

System Architecture Overview: 

from Design to Verification
The system architecture (Figure 1) showcases the interaction between various components within the RISC-V based 

system. At the core is the RISC-V CPU (CV32E20 [2]), which communicates with a specialized co-processor (CO-PROC) 

through the CV-X-IF interface. The memory subsystem features several tiles of ComputeRAM , an advanced in-memory 

computing technology that performs computations directly within the memory array, significantly reducing data transfer 

bottlenecks and improving efficiency.

The architecture is interconnected via the AMBA/Peripheral Interconnect, facilitating communication between the CPU, co-

processor, memory subsystem, and various peripheral units such as the Event Unit, JTAG, uDMA, Timer, Debug Unit, and 

I/O interfaces. This interconnect ensures efficient data flow and coordination among all components, enabling the system to 

achieve high performance and low power consumption.
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ISA extension
Our co-processor is equipped with a custom Instruction Set Architecture (ISA) that includes several non-standard operations 

not ratified by any official RISC-V organization. These operations support different data parallelism modes, such as half-

word (16-bit), byte (8-bit), and mixed precision (16-bit and 8-bit). 

This flexibility allows for optimized processing of various computational tasks, enhancing performance and energy efficiency. 

Key operations include a selected subset of Xpulp_V2 [3] and pseudo-SIMD operation [4], where pseudo indicates that the 

data bit width is dynamic and programmed on the fly in the CSR, rather than embedded in the instruction itself.

In-memory computing
In this system, the ComputeRAM  macro, an advanced in-memory computing tile, is employed. ComputeRAM  enables 

computations to be performed directly where the data resides, eliminating the need for extensive data movement between 

the CPU and memory. This integration accelerates processing and enhances energy efficiency, making it ideal for edge AI 

and IoT applications.

Compute features:

• Bit-accurate computation

• Matrix-vector product computation primitive

• Intermediate and full-precision modes

• Fixed point, signed, and unsigned integer data types, as well as 32, 16, 8 bit width and mixed precision 16x8 

operation supported

Verification Methodology
The verification process leverages SystemVerilog and UVM methodologies. Starting with Google's RISC-V-DV random 

instruction generator [6] or specific test cases, the source code is compiled using an LLVM toolchain. This toolchain 

accommodates both the ISA extension and the in-memory compute tiling to produce an executable .elf file. This executable 

is used to set up the Device Under Test (DUT) simulation and the instruction set simulator (ISS), which in this case is Spike. 

The simulation runs in step-and-compare mode to verify the correct functioning of the core. Concurrently, a UVM-based 

RISC-V model, fully written in SystemVerilog, is developed to replace the ISS in a unified UVM-closed simulation 

environment.

This poster outlines the ongoing efforts and future goals in integrating custom ISA extensions and in-memory computing into 

a RISC-V-based system architecture. These innovations aim to significantly enhance processing speed and energy 

efficiency, crucial for meeting the demands of modern computational tasks, particularly in edge AI and IoT applications.

The ComputeRAM  macro represents a promising in-memory computing solution designed to reduce latency and energy 

consumption for matrix-vector multiplications. Early benchmarks indicate that ComputeRAM  could drastically improve 

performance, positioning it as an ideal component for boosting the capabilities of microcontroller-based systems without 

extensive modifications to existing memory architectures. Its potential for seamless integration as a drop-in replacement for 

conventional SRAM highlights its practicality and effectiveness.

It be noted that the RISC-V core, the co-processor, and the verification environment will be released open-source as part of 

the TRISTAN project [7].

Current solutions often struggle with either usability or performance (Table 1), yet research highlights the efficiency gains 

from customized RISC-V extensions and in-memory computing for advanced processing architectures. 

This poster presents a RISC-V system enhanced with Synthara's C ComputeRAM , which provides compute-in-memory 

capabilities and custom ISA extensions, aiming to boost performance in MCU-based edge systems with low energy 

consumption. The RISC-V core, the co-processor, and the verification environment, explained in the following sections, 

are released as open-source.

Using a coprocessor to implement these 

custom extensions can offload specialized 

tasks from the main CPU, allowing for 

parallel processing and freeing the primary 

core to handle general-purpose workloads. 

This approach boosts overall system 

performance and helps in managing power 

consumption more effectively. 

In addition, by performing computations 

directly within the memory where data 

resides, in-memory computing 

(ComputeRAM  in our implementation) 

reduces the data transfer bottleneck, 

leading to faster and more energy-efficient 

processing.

ComputeRAM ’s SDK includes libraries that support writing target independent code (Figure 2 left), enabling 

programmers to develop and optimize neural networks for ComputeRAM  enabled devices in PyTorch and TensorFlow, 

boosting performance and energy efficiency for linear algebra-intensive applications.

Table 1. Comparison of different solutions in terms of ease of use, 

performance, cost, and extensibility.    

Figure 1. Generic system overview of a microcontroller system embedding a RISC-V CPU, a coprocessor and one or more 

in-memory computing tiles
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Figure 3. Testbench overview and verification methodology for the RISC-V core using Google RISC-V-DV, LLVM, SPIKE, 

and a custom UVM SystemVerilog model..

The system-level improvement factors attributed to the use of ComputeRAM  are presented 

in Figure 2 (right). When ComputeRAM  is used instead of a traditional SRAM, 

improvements between 11.74x and 139.72x can be achieved in terms of latency, and 

between 12.23x and 158.7x in terms of energy efficiency. 

This macro is seamlessly integrated into the existing memory hierarchy, providing a drop-in 

replacement for conventional SRAM with minimal area overhead and substantial 

computational benefits. ComputeRAM  is built with GlobalFoundries 22FDX process, with 

Memory Compiler and FinFET variants under development.

Figure 2. Left: ComputeRAM  code example for matrix-vector multiplication using the provided libraries. Right: Gate-

level simulation MVM improvement factors achieved by a microcontroller-based system with ComputeRAM  vs regular 

SRAM configuration, calculated as the ratios between the two.

The enhancements included in the ISA extension are: 

• arithmetic functions like absolute value, minimum, maximum, and complex multiply-accumulate operations.

• 32, 16 and 8 bits MAC operations with quantization and rounding

• pseudo-SIMD operations with mixed precision (16x8 bits) for arithmetic, logic and shift functions

• pseudo-SIMD dot-product operations. 

• Stream Semantic Register (SSR) [5] for load/store address generation automation and code reduction.

This model features:

• Modular Design: The CPU model is structured in a modular fashion, facilitating easy integration and improvement.

• Customizability: It allows for extensive customization, enabling tailored adjustments to meet specific project 

requirements or design variations.

• Full SystemVerilog and UVM Compliance: Ensures compatibility and standardization across verification processes.

• Multiple Model Views: The scoreboard provides multiple views of the CPU model, offering different levels of detail 

based on verification needs.

• Stage-Specific Detailing: Detailed information from each stage of the CPU model is accessible during verification, 

enhancing the depth and accuracy of the verification process.
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